File System Trace and
Replay
Noah Watkins /7 UC Santa Cruz

James Nunez, Meghan Wingate, John Bent / LANL

Advisors: Scott Brandt, Carlos Maltzahn

Tuesday, October 19, 2010



What is tracing?

® Creation of a signature
describing the execution
of a system:

® This talk is about file
system traces

® Ordered sequence of
events

® Statistical aggregation

Noah Watkins

Simulation
Running on
Cluster Z
/
Z
Ui
I/O Statistics I/O Traces
500 Reads T1 Read(...)
700 Writes T2 Write(...)
40% Sequential T3 MPI_X(...)
60% Random T4 HDF5_Y(...)

10% MPI-10

T5 MPI_Barrier()

jayhawk(@cs.ucsc.edu

Tuesday, October 19, 2010



mailto:jayhawk@cs.ucsc.edu
mailto:jayhawk@cs.ucsc.edu

What is

Trace replay is the
reproduction of a traced
workload having only
knowledge of a trace.

Replay fidelity is how
accurately the original
workload is reproduced.

Noah Watkins 3

replay?

I/O Statistics I/O Traces
500 Reads T1 Read(...)
700 Writes T2 Write(...)
40% Sequential T3 MPL_X(...)
60% Random T4 HDF5_Y(...)
10% MPI-10 T5 MPI_Barrier()
=
Cluster

jayhawk(@cs.ucsc.edu

Tuesday, October 19, 2010



mailto:jayhawk@cs.ucsc.edu
mailto:jayhawk@cs.ucsc.edu

Why trace and replay!

HPC at LANL pushes
the limits of storage

systems

R&D collaborators
Classified and controlled
applications cannot be

distributed

Distribute traces, not
apps

Noah Watkins

Controlled

Computation

N

Internet / Universities / R&D

jayhawk(@cs.ucsc.edu

Tuesday, October 19, 2010



mailto:jayhawk@cs.ucsc.edu
mailto:jayhawk@cs.ucsc.edu

Previous work

/ Heavy weight (ptrace)
strace = Statistical aggregation
Darshan

[/ Trace=—==8Complex inter-node dependencies

blktrace —w |, general, no app-specific info
ScalaTrace

Pianola Aggressive, custom compression

\ Similar approach, unsupported

Noah Watkins 5 jayhawk@cs.ucsc.edu

Tuesday, October 19, 2010


mailto:jayhawk@cs.ucsc.edu
mailto:jayhawk@cs.ucsc.edu

Tracing goals

® No code changes

® Entire software stack | 7 )’ Q‘ "v r
b
® |ow-overhead logging ‘s \

® Easily integrated with
existing applications

Noah Watkins 6 jayhawk@cs.ucsc.edu

Tuesday, October 19, 2010


mailto:jayhawk@cs.ucsc.edu
mailto:jayhawk@cs.ucsc.edu

The observer effect

® A normal function call
incurs virtually no
unnecessary overhead

® |n order to record
function calls, they must
be observed and saved

® Minimizing this overhead
IS Important

Noah Watkins

Normal Function Call

Time Application Library

read()

\ read()
/ return()

jayhawk(@cs.ucsc.edu

Tuesday, October 19, 2010



mailto:jayhawk@cs.ucsc.edu
mailto:jayhawk@cs.ucsc.edu

The observer effect

® The act of observing an
Captured Function Call application’s execution
. . 9
Time Application Interposition Library alters the GPPIICGtIOn S
read) behavior

\ read()
real_read() \ al read() ® Record a timestamp

s ® Encode data
] e Buffer/write data

® Resource contention

Noah Watkins 8 jayhawk(@cs.ucsc.edu

Tuesday, October 19, 2010


mailto:jayhawk@cs.ucsc.edu
mailto:jayhawk@cs.ucsc.edu

Our approach to tracing

® |dentify, measure, and
minimize sources of
overhead

|. Interposition
2. Timekeeping
3. Logging

4. Resource

Noah Watkins 9 jayhawk@cs.ucsc.edu

Tuesday, October 19, 2010


mailto:jayhawk@cs.ucsc.edu
mailto:jayhawk@cs.ucsc.edu

Tracing architecture

. . Traced Application
® Traced application e
execute as nhormal (|) POSIX | |NetCDF | | HDF5 MPI || MPI-IO
libc
® Inte I‘pOSition |ibl‘a I‘)’ Unmodified Application and Supporting Libraries

forwards events, and

o——©

executes original — ——
function (2) oo |yl [T
Source
MPI-10
1 Output
® Datastreams' library interposition
Library Datastreams
buffers and schedules

trace events (3) V vV ¥

e e o e e e e e e e e e e e e e = e e e e = o = = = = = = = - = = —— = — — —

1. http://www.ittc.ku.edu/kusp

Noah Watkins 10 jayhawk(@cs.ucsc.edu

Tuesday, October 19, 2010


mailto:jayhawk@cs.ucsc.edu
mailto:jayhawk@cs.ucsc.edu
http://www.ittc.ku.edu/kusp
http://www.ittc.ku.edu/kusp

Evaluation




Interposition cost and
extensibility

® Modular approach to

o link-ti ' . LA
Link-time function interposition libraries:

wrapping provides

minimal interposition cost. o MPI
® read(.)--> __ wrap_read(..) * MPI-IO
o HDF
®  wrap_read(...) o netCDE
® |ogs event e POSIX

® calls _ real read(...)

Noah Watkins 12 jayhawk(@cs.ucsc.edu

Tuesday, October 19, 2010


mailto:jayhawk@cs.ucsc.edu
mailto:jayhawk@cs.ucsc.edu

Clocks are unpredictable

® Three x86 machine
classes

® 5 clock sources

e Wildly different
results

nanosec / operation

® TSC not shown

® Need pluggable
clock architecture

Noah Watkins

1680 F
1560 |
1440 |
1320 |
1200 |
1080 |
960 |
840 |
720 |
600 |
480 |
360 |
240 |
120 |

M-a -avg

[ ]
M-b -avg
Machine

GTOD
REAL-TIME
MONOTONIC
PROCESS
THREAD

i

build3

jayhawk@cs.ucsc.edu

Tuesday, October 19, 2010



mailto:jayhawk@cs.ucsc.edu
mailto:jayhawk@cs.ucsc.edu

Logging cost per core

Average Overhead Per Traced Event

! ! ! ! ! ! ! !
e
I I I I I I I I I us
N R S S R :
-/.(?\ i i i i i i
c 1
S
B e -
o i
Q :
E
- A S SRR R S ]
: l
(@)
9 |
'E :
o e e .
i
2us 2 .o . l rrrrrrrrrrrrrrrrrrrr I rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr -
0 ] ] ] ] ] ] ] ]
0 1 2 3 4 5 6 7 8 9

Number of processes per node

Noah Watkins 14 jayhawk@cs.ucsc.edu

Tuesday, October 19, 2010


mailto:jayhawk@cs.ucsc.edu
mailto:jayhawk@cs.ucsc.edu

Logging throughput per core

Maximum Sustained Logging Rates Per Process

450 5 ! ! | |
400K e/s «
350
300
250

200

Events/second (x1000)

150

100

- ; ; ; ; ;

Number of processes per node

Noah Watkins |5

100K e/s
X 8 cores

jayhawk@cs.ucsc.edu

Tuesday, October 19, 2010


mailto:jayhawk@cs.ucsc.edu
mailto:jayhawk@cs.ucsc.edu

Tracing status

® Integrated into real-
world HPC applications

® Tracing infrastructure
adapted to non-file
system, parallel
applications (VTK data
models)

® Increasing usability and
documentation

Noah Watkins 16 jayhawk@cs.ucsc.edu

Tuesday, October 19, 2010


mailto:jayhawk@cs.ucsc.edu
mailto:jayhawk@cs.ucsc.edu

Trace replay goals

® Standardized, portable trace format

o XDR* Google Buffers, Thrift
® Execution modes

® Distributed POSIX traces v.s. MPI traces
® Fidelity assessment

® E.g.total runtime, per-node measurements

Noah Watkins |7 jayhawk(@cs.ucsc.edu

Tuesday, October 19, 2010


mailto:jayhawk@cs.ucsc.edu
mailto:jayhawk@cs.ucsc.edu

lrace replay

A Y N
[
)

® Work in progress
® More research potential

® Inter-node
synchronization
important for fidelity?

2. “Trace: Parallel Trace Replay With Approximate Causal Events”, Mesnier, Michael P, et. al.,, FAST 2007

Noah Watkins 18 jayhawk@cs.ucsc.edu

Tuesday, October 19, 2010


mailto:jayhawk@cs.ucsc.edu
mailto:jayhawk@cs.ucsc.edu

Tuesday, October 19, 2010


mailto:jayhawk@cs.ucsc.edu
mailto:jayhawk@cs.ucsc.edu

